Mining Customer Knowledge for a Recommendation System in Convenience Stores

نویسندگان

  • Shu-Hsien Liao
  • Chih-Hao Wen
  • Pei-Yuan Hsian
  • Chien-Wen Li
  • Che-Wei Hsu
چکیده

Taiwan’s rapid economic growth with increasing personal income leads increasing numbers of young unmarried people to eat out, and shopping at convenience stores for food is indispensable to the lives of these people. Thus, it is an essential issue for convenience store owners to know how to accurately market appropriate products and to choose effective endorsers for brands or products in order to attract target consumers. Data mining is a business intelligence analysis approach with great potential to help businesses focus on the most important business information contained in a database. Therefore, this study uses the Apriori algorithm as an association rules approach, and clustering analysis for data mining. The authors divide consumers into three groups by their consumer profiles and then find each group’s product preference mixes, product endorsers, and product/brand line extensions for new product development. These are developed as a recommendation system for 7-11 convenience stores in Taiwan. Mining Customer Knowledge for a Recommendation System in Convenience Stores

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DESIGN AND IMPLEMENTATION OF FUZZY EXPERT SYSTEM FOR REAL ESTATE RECOMMENDATION

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; backgro...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

DESIGN AND IMPLEMENTATION OF FUZZY EXPERT SYSTEM FOR REAL ESTATE RECOMMENDATION

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; backgro...

متن کامل

Revealing the Retail Black Box by Interaction Sensing

Today a huge variety of methods to track and analyze the customers’ behavior in e-commerce systems is available. However, in traditional retail stores such systems are not widely known and therefore the customers’ behavior is considered as a black box in this domain. This paper presents the Smart Shelf technology able to track basic simple actions, such as take, return and remove, which are per...

متن کامل

Recommendation Rules - a Data Mining Tool to Enhance Business-to-Customer Communication in Web Applications

Contemporary information systems are facing challenging tasks involving advanced data analysis, pattern discovery, and knowledge utilization. Data mining can be successfully employed to sieve through huge amounts of raw data in search for interesting patterns. Knowledge discovered during data mining activity can be used to provide valueadded services and benefits to users, customers, and organi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDWM

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014